
django-call-after-commit
documentation

Release

Thread

May 29, 2014

Contents

1 Call methods after the current database transaction has been committed 3
1.1 Installation . 3
1.2 Usage . 3
1.3 Configuration . 4
1.4 Links . 4

Python Module Index 5

i

ii

django-call-after-commit documentation, Release

Contents 1

http://dev.thread.com/

django-call-after-commit documentation, Release

2 Contents

CHAPTER 1

Call methods after the current database transaction has been
committed

This project provides the ability for Django applications to mark methods to be called immediately after the current
database transaction has committed.

This has two main use-cases:

1. You wish to perform an asynchronous task but your queue runner will not “see” the updated state of your
database due to transaction isolation.

For example, when registering a new user you might wish to download an avatar from a third-party provider
without blocking the current request. In this scenario, your queue job may non-deterministically race and start
executing without the new user actually being “on disk” yet and thus not appearing to exist, resulting in a failed
job that would have run without issue milliseconds later.

2. You wish to execute potentially dangerous side-effects only after you are sure that you have really committed to
a particular version of “truth”.

For example, if you send emails within a transaction and that transaction fails to commit, the sent email will
still have been sent, causing potential confusion if the email only “makes sense”–or works at all–if the database
was changed permanently. Worst still, these emails may be duplicated later if your application’s logic relied on
a “sent” flag being changed as part of the failed transaction - it will appear to your project that the email is yet
to be sent. This behaviour can be compounded in cronjobs, resulting in 1000s of duplicate emails.

1.1 Installation

1. Add django_call_after_commit.middleware.CallAfterCommitMiddleware to
MIDDLEWARE_CLASSES. It should go after django.middleware.transaction.TransactionMiddleware
if you are using an older version of Django.

1.2 Usage

Instead of calling your method using:

some_method(arg1, arg2)

use:

3

http://www.djangoproject.com/
http://en.wikipedia.org/wiki/Isolation_(database_systems)
http://en.wikipedia.org/wiki/Race_condition

django-call-after-commit documentation, Release

from django_call_after_commit import call_after_commit

call_after_commit(some_method, arg1, arg2)

It is save to use call_after_commit outside of a “request” context - your method will simply be called immedi-
ately.

1.3 Configuration

(None)

1.4 Links

Homepage/documentation: https://django-call-after-commit.readthedocs.org/

View/download code https://github.com/thread/django-call-after-commit

File a bug https://github.com/thread/django-call-after-commit/issues

Figure 1.1: See more open source projects from Thread.com

4 Chapter 1. Call methods after the current database transaction has been committed

https://django-call-after-commit.readthedocs.org/
https://github.com/thread/django-call-after-commit
https://github.com/thread/django-call-after-commit/issues
http://dev.thread.com/
http://dev.thread.com/

Python Module Index

d
django_call_after_commit, 1

5

	Call methods after the current database transaction has been committed
	Installation
	Usage
	Configuration
	Links

	Python Module Index

